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The effect of the molar-mass distribution (MMD), in particular the effect of a few higher molar-mass
averages, on liquid-liquid phase behavior is studied with the aid of data based on the Flory-Huggins—
Staverman model. The critical concentration and the critical slopes of the cloud-point curve and the
shadow curve appear to be quite sensitive to m, and m, , ;, and, theoretically, they could serve as a
unique data source for estimating these averages. In practice, however, experimental difficulties and
errors encountered, especially with the shadow-curve slope determination, are probably too great for
these data to be of any use. Next, the entire cloud-point and shadow curves, and phase-volume ratios
are examined with respect to the possible use to supply information on the MMD. At constant
weight- and number-average molar mass, the cloud-point curve does not appear to be overly sensitive
to the M,-average in the studied range. As to the other curves, no simple relationship evolves either,
higher averages and details of the MMD both determining shape and location of shadow and phase-
volume curves. An alternative procedure is suggested which consists of fitting a set of delta functions
to a series of data points.

The higher averages of a molar-mass distribution (MMD), such as the centrifuge aver-
ages M,and M, , |, are notoriously difficult to assess. The obvious absolute method is
provided by the evaluation of sedimentation-diffusion equilibria in the ultracentrifuge,
preferably under @-conditions. However, the procedure is so time-consuming that, but
for a few studies in the past! ~, virtually no application of the method can be found in
literature. Usually, size-exclusion chromatography (GPC) is the source of information
on the MMD, and values for higher averages, thus obtained, are often reported. Unfor-

* Part XXV in the series Liquid-Liquid Phase Separation in Multicomponent Polymer Systems; Part
XXIV: Ber. Bunsenges. Phys. Chem. 89, 1234 (1985).
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tunately, such values are very uncertain because they are determined mainly by the
amount of high molar-mass material in the sample which cannot be estimated very well
by GPC. The higher averages being important, c¢.g., in theories of the rheology of
polymer melts’, consideration of a possible alternative should be worthwhile.

Some years ago it was demonstrated that the MMD markedly influences liquid—
liquid phase relationships in polymer solutions® = !2, It was also established that the
higher-average molar masses play a predominant role here. This observation gave rise
to an attempt at making use of this sensitivity and develop an alternative method for the
dctermination of the MMD based on an analysis of phase relationships. Moderate suc-
cess could be reported in that for a sample of polystyrene, MMD’s derived from se-
dimentation—diffusion cquilibrium and from coexisting phasc compositions appeared to
agrec quite well'®. The analysis was bascd on a quasi-binary phase diagram for solu-
tions of this sample in cyclohexane which had been established carlier by Rehage et al.
in an cxtensive experimental investigation'. These data, in conjunction with a good
approximation of the Gibbs encrgy of mixing (AG) in its dependence on MMD,
polymer concentration, ¢, and temperature, 7, allowed the sample’s MMD to be esti-
matcd. Figure 1 shows the two MMD’s which agree in range of molar masses covered
(105 — 10%), and in bimodal shape. The ultracentrifuge procedure was developed by
ScholteS.

The procedure has two drawbacks. In the first place, obtaining sufficiently accurate
information on AG(MMD, ¢, T) is time-consuming, and, sccondly, the collection of a
sct of coexisting phase compositions is also a laborious affair. If a series of samples has
to be analyzed the first disadvantage should not be too scrious. Mcthods have been
developed to determine the various parameters in the AG expression'>!® and the invest-
ment in time would seem rcasonable. The second problem might also be minimized if
a fast procedure for the determination of cquilibrium phasc compositions could be de-
veloped.
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FiG. 1
Molar-mass distribution for a sample of polystyrene, obtained by sedimentation—diffusion equilibrium
in the ultracentrifuge (@) and by analysis of liquid—liquid phase relations (b), both in cyclohexane
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This paper is a preliminary report on an examination of possible simplifications in
the data taking. In particular, we investigatc whether cither shadow curve or phase-
volume ratio (as a function of temperature at a given initial polymer concentration)
might offer useful tools in the assessment of the MMD, or of higher molar-mass aver-
ages. The analysis is theoretical, based on the AG expression derived independently by
Staverman and Van Santen!”!8, Huggins!®?° and Flory?! (FHS model). However, the
suggested procedure should be of general validity, because the equations used may
easily be cxtended to cover systems in which the interaction function depends on the
overall polymer concentration. Such an adaptation and its application to actual systems
is currently being studied.

It should be mentioned that the first indication of possible viability of the approaches
proposed here is contained in the carly work by Boyer?2. This author studied the vol-
ume of the concentrated phase at constant ¢ as a function of the composition of a binary
solvent. The latter variable was used instead of temperature to cffect a change in .
Boyer claimed that the fashion in which the volume of the polymer-rich phase varies
with the non-solvent concentration is indicative of the width of the initial MMD. It was
shown later that Boyer’s conclusion is indeed valid, albeit only if samples are com-
pared in which the MMD is identical in type®.

LIQUID-LIQUID PHASE RELATIONS IN QUASI-BINARY POLYMER SOLUTIONS

Owing to its inherent polydispersity with respect to chain length, no polymeric consti-
tuent can be treated as a single component. Conscquently, a two-dimensional phase
diagram for solutions of a polymer in a single solvent necds to be constructed and read
with caution. In the present account, the scope will be limited to two-phase separations
only. Such quasi-binary diagrams have characteristics illustrated schematically in Fig. 2
(refs® ~ 11,15.2425) 'We note that the liquid-liquid critical point cannot be identified with
the extreme of the cloud-point curve (CPC). The dashed curve, called shadow curve,

T
Ta
FiG. 2
Typical phase diagram for a quasi-binary polymer
solution: cloud-point curve, — - — — shadow
curve, Q critical point ] % 0
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represents the overall polymer concentration of phases that are on the verge of appear-
ing when a homogeneous solution like A is cooled down to the cloud point. Thus, the
phase ¢, is in equilibrium with the bulk phase ¢, at the cloud-point temperature, T,.
The polymer in the bulk phase ¢, has the MMD of the initial polymer, whereas the
MMD of the still infinitesimally small faction in the incipient shadow phase ¢, differs
from that of the polymer in the bulk phase.

In the following we shall address the question to what extent the initial MMD exerts
an influence on CPC and/or shadow curve when number- and weight-average molar
mass are kept constant, but the higher averages vary. Mecasurement of the CPC is usual
practice, but a shadow curve is less tractable experimentally. Instead of this elusive
curve onc might consider another property, more open to experimental determination.
Measurement of the phase-volume ratio (to be denoted by r) is open to some degree of

automatization?® ~ 2% which might provide perspectives.

CALCULATION PROCEDURES

The FHS cquation for solutions of a polydisperse polymer in a single solvent reads
AG/NRT = ¢y In¢y + Z(o;/m;) Ino; + xdd,, (1)

where N is the total amount of lattice sites in moles, R is the gas constant, T is the
absolute temperature, ¢y and ¢; arc the site fractions of solvent molecules and of
polymer chains occupying m; lattice sitcs cach, respectively, x is the Van—Laar interac-
tion paramecter, and ¢ = X ¢; is the site fraction occupied by all polymer chains. Ob-
viously, ¢p =1 - ¢.

Equilibrium conditions arc defined by the equality of chemical potentials ;. For the
FHS expression we have

Aug/RT = Ingy + (1 =m0 + 342 (2a)

Ap/mRT = m7' Ing; + mi' = 1+ (1-m") ¢ + %63, @b)

[

where the number-average chain length m, is defincd by
o/m, = Zo/m;. (€)]

The equilibrium state for a separation into two phases, a and b, is determined by the
conditions

Aug, = Apg,; Ap;, = Apy,. )
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Introduction of Egs (2a) and (2b), followed by subtraction and rearrangement, yields

Oa/0i = €7, )

where ¢;, and ¢, are the site fractions of polymer component i in the two phases, and
o is defined by

o = In(dpp/p) + 2% (b, -9,). )
The temperature dependence of the interaction parameter i may be represented by

X = % + N/T. @)

We discuss the problem in general terms here and do not need to specify ¥, and /i. The
temperature axis in the various graphs will be represented by x.

Cloud-Point and Shadow Curves

Phasc b may be considered to represent the bulk phase (no subscript) and phase a the
shadow curve (subscript s). Equation (5) thus becomes

O/ i = €7 (C))
If w; is the weight fraction of macromolecules 7 in the original polymer we may write
o = ow; (9a)
and, by virtue of Eq. (8),
G = Qwc™M, (%9b)
so that the total polymer concentration in the shadow phasc is
o, = ¢ZTwem (9¢)

and the number-average chain length of the polymer in the shadow phase, m_, is given
by

o/m . = ¢Z(w,/m;)c . (9d)

The calculation of a cloud point for a given MMD may proceed as follows. For any
¢ on the CPC there arc two unknowns of direct physical interest, viz., ¢, and x. The
shadow concentration is determined by o [Eq. (9¢)] and, therefore, the choice of a trial
value for o (= 0;,) is the first step in the calculation. Then, ¢ and m can be computed
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with Eqs (9¢) and (9d). The equilibrium condition for the solvent, Eqs (2a) and (4), is
now used to calculate % which is then introduced into Eq. (6) to yicld o,. The trial
value g, is varicd until Ao = o;, - o, is sufficiently close to zero to produce a
meaningful solution. It should be noted that in multiphasc systems there may be more
than onc solution (¢, X, ©) for a chosen ¢, corresponding to the formation of more than
onc incipient phase!l.

The location of the critical point on the CPC can be determined from Stockmayer’s
expression for critical state and spinodal®

(1 + (m,/&)"?]" (10a)

.

X = (05 + (9.my)')/2, (10b)

where § = m,/m,,, and the weight- and z-averages arc defined as usual

om, = Zo;m; om,m, = Z;m?.

w z

Furthermore!!, the slope of the CPC at the critical point is determined by m,, and E, too
(dx/d¢), = [1 + (E/m)"?]F (1-¢€1/2, (10c)

whercas the slope of the shadow curve here is affected also by the (z + 1)st average
(dx/do,), = (dx/dg), (do/dp), =

= —(dy/dd). Gm,+2m2-m_, )/ (m, ,  +2m2+4m, -3 m). 10
X (S z z z+ 1 z+1 z w z

It is interesting to note that while the CPC slope at the critical point is always positive
[cf. Eq. (10c)], the shadow-curve slope (dy/dé,). can go cither way. For “well behaved”
distributions (probably the majority of cases) all multiplicative factors of Eq. (10d) are
positive, yiclding the slope (dyx/d¢,). negative as expected. However, if cither of the
parentheses in the numerator or denominator of Eq. (/0d) becomes ncgative, the sign of
the slope (dx/dé,). is switched to the positive.

Accordingly, there are two distinct conditions for having the shadow-curve slope > 0:

1) The derivative (dy/do,). will be positive if the denominator of Eq. (10d) becomes
negative, i.c., if

m,,, < 3m, -2m? - 4m,, (11a)

which can be further simplified for m, — o (polymer with very high molecular
weight) as

Collect. Czech. Chem. Commun. (Vol. 58) (1993)
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m,, /m, < 3 - (4/8). (11b)

Equation (/1b) obviously demands that § = m,/m,, be greater than 2. Similarly, the
minimal permissible € can be formulated for the original full condition (11a) though
the result is less transparent, available only in the form of an infinite scries

E > 24+ @2/m)2+ 1/2my) + 1/2"m))V? - .. .. (I1c)

Hence, it can be concluded that the positive slope (dy/d¢,). of the “first kind” will only
appear if the asymmetry is at least 2 (or somewhat higher if the weight average m,, is
low), and if, at the same time, m, , , is smaller than the R.H.S. of Eq. (11a). In qualita-
tive terms, (dy/d¢). > O requires a moderately high ratio m,/m,, but rclatively low ratio
m, , ,/m,, pcrhaps a somewhat unusual combination.

2) The derivative (dy/d¢,). will be positive if the numerator of Eq. (10d) becomes
negative, i.c., if

m > 3m, + 2m)*. (11d)

z+ 1

This condition is recognized as the criterion for the so-called “unstable” critical points,
i.c., critical points located on the unstable portion of the CPC between its two cusps!l,
indicative of three-phase cquilibria. Indced, it has been known for some time from
numerical studies of CPC’s that in these cases the shadow curve develops a maximum
and a minimum between which the slope flips its sign into positive®®. However, since
the focus of the present study is on two-phase separations, this case will not be pursued
any further.

Fortunately there is no need for concern that both parenthese of Eq. (10d) might turn
negative at the same time, with two negatives cancelling cach other and restoring the
original negative sign to the slope. Clearly, the conditions (/7a) and (11d) arc mutually

cxclusive.

Phase-Volume Ratio

The calculation of phase cquilibria “within” the CPC is a little different. We fix ¢ and
r. and derive the concentrations of the individual polymer components in cach phase

’

from the lever rule:

q)i(r+1) = rq)iﬂ + (pﬂﬁ’ (12)

where r = V,/V, stands for the ratio of the volumes of phases a and b. Combining with
Eq. (5), and summing over all polymer species, we get
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oo = F+ DOZw/(1+rem) (13a)
o/my = (r+1)0Zw/[m, (1 +rcom)] (13b)
0, = (r+1)oZ w,com/(1 +rcom) (13c)
0 /My, = (r+ 1)@ w,e/[m; (1+rcom)]. (13d)

A trial value for o allows computation of all quantitics defincd in Eqs (13) and the
calculation then proceeds as with the CPC.

Molar-Mass Distributions
Sets of Delta Functions

A binary sct (w;, m; w,, m,) is determined uniquely if three average molar masses are
known, c.g., m_, m,, and m,. We have then four equations for the four unknowns

w+w, = 1 (14a)
ml = w/m; + wy/m, (14b)

m, = W, m; + w,m, (14c)
m,m, = w, mi+ w,m3. (14d)

Scts with more than two components nced additional assumptions. A quatcrnary sct,
for instance, has cight unknowns and could be constructed in the following fashion.
Instead of two & functions we use two sets 1 and 2, cach containing two & functions.
We choose values for v, §; and v,, &,, where v = m,/m_  and § = m,/m,,. Four un-
knowns remain, viz., the total weight fractions of scts 1 and 2 (w; and w,) and their
weight-average chain lengths m,,; and m,,. The four equations (/4) may be used in an
adapted form

Collect. Czech. Chem. Commun. (Vol. 58) (1993)
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w +w, =1 (15a)
m' = wyvi/my + wy vy /my, (15b)
m, = w my, + wymy, (15¢)
m,m, = w g my + wyEmg,. (154d)

Next, each set is subjected to the construction of a binary set with Eqs (74). The equa-
tions are solved numerically. Extension to 2" components is conceivable in this manner.

Continuous Distributions

We sclect the exponential distribution (Schulz—Zimm distribution) to represent the
MMD w(m), and usc it in the following form

wim) = Am+le™, (16)

where A is the normalization factor, and A and t arc parameters. Using the general
cquation for the integral between 0 and =,

0

fm"*”c"”'dm = TA+1+n)T®+1+m 17)
0

and the difference formula T(p + 1) = pI'(p), where T'(p) is the gamma function, it is
casily shown that the three parameters arc fixed by

A= W2 T(A+2), m, = (A+2)/1, m, = (At 1)/1, (17a)

where the total mass W of polymer equals 1. Note that for an exponential distribution
E =2 - v}, ic, its asymmetry, never greater than 2, is determined by its width v.

Independent choice of v and E desirable for modelling purposes is possible for an
MMD represented by a sum of two exponcntial distributions

w(m) = A mM*le™m 4 Aymhat e 18)

and the construction described above in relation to Eqs (15) may be used to adapt the
parameters to the actual values of m,, m, and m,. The normalization factors A; and A,
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now rcfer to the relative masses of the two MMD’s, listed as w, and w, in Table III. In
calculating the CPC’s and phasc—volume ratios for continuous distributions, the sum-

mations in Eqs (9¢), (9d) and (13) arc replaced by integrations.

TABLE 1

Parameters of MMD1’s. Set of two 8 functions

E: 1.5 2 3
wi: 0.5 0.72361 0.86380
my: 29.29 38.20 43.84
w2 0.5 0.27639 0.13620
mz. 170.7 261.8 456.2
mz+1: 166.7 250.0 4333
(dy/d,)e: -0.4579 -1.574 7.182
10
w, a
w(m).100 TN
7 ~.
/ N
[ 2 \.\ 1
f \
i N
. v \
ot A TN
10 ./.f\-\‘ .
w / \
(4 / \.
w(m).100 / \
/ A
oS5t /./ \ :
. , \
r'/ ! ! \
' ' \
: | A '
ol 1 HE B et
= ]
1ot /./ \ c
w ./' \
/ \
w(m).100 / \ FiG. 3
osk /7 \ J Molar-mass distributions used in the calcula-
," , , \\ tions: set of two & functions (MMD1),
./ E AN -—-—-- set of four 8 functions (MMD2),
]
! ! \\. i R e sum of two exponential distributions
o 1 HEN . - _ _
0 100 000 (MMD3). In all cases m,, = 100, v = 2.

Values forE: @ 1.5, b2, ¢3
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Distributions Used

The MMD’s used in this study are shown in Figs 3a — 3c. They are all identical in m,,
(= 100) and v (= 2) but differ in asymmetries, § = m,/m,,, that vary as 1.5, 2, and 3,
respectively, for figures a — ¢. Moreover, cach figure of the triplet contains lines drawn

0 01 0-2 Py 0-4 0 041 0 03

Fi6. 4
Cloud-point curves ( ) and shadow curves
(- = = -) calculated with the FHS model for the
distributions of Fig. 3 with various values of E: @
1.5, b 2, ¢ 3. Type of distribution: 1 MMDI, 2 : - +
MMD2, 3 MMD3 0 01 ¢ 03
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in three diffcrent ways, corresponding to three types of distributions: MMD1 represents
a binary polymer, MMD?2 a quaternary one, and MMD3 is a sum of two exponential
distributions. Various parameters of these distributions are listed in Tables I —III, each
for one type of the distribution, with three numerical columns covering the threc inves-
tigated asymmetries of 1.5, 2 and 3. We note that, plotted as the ordinate for MMD3 is
simply w(m) of Eq. (18), not 2.3 m w(m) as normally required when employing loga-
rithmic scale for m. Consequently, the area under the curve does not properly reflect the
amounts of various fractions in the sample.

TABLE 11

Parameters of MMD2's. Set of four & functions; v; = v, = 1.25,§, = §; =

E: 1.5 2 3

wi 0.17094 0.35750 0.44365

my: 16.93 26.78 31.15

wa 0.17094 0.35750 0.44365

ma: 44.33 70.12 81.55

wi: 0.32906 0.14250 0.05635

m3: 75.20 126.8 245.2

wa 0.32906 0.14250 0.05635

my: 196.9 331.9 642.1

Mg+t 177.8 281.5 533.4

(dy/doy).: -0.4091 -1.029 -2.706
TaBLE III

Parameters of MMD3's. Set of two exponential functions; v, = v, = 1.5, = E, = 4/3, A, = A, =1

mwi:
w2
my2:

Ty . 10%

mz 4+ 10

(dx/dey)c:

1.5
0.78868
118.3

0.21132

31.70
2.5359
9.4641

194.4

-0.3481

2
0.21132
236.6
0.78868
63.40
1.2679
4.7321
3334
-0.5938

3
0.06356
529.1
0.93644
70.87
0.56697
4.2330
7222
-0.3796
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RESULTS

It follows from Eqs (10a) — (10c) and is confirmed by Figs 4a — 4c that, at constant m,,
and m, (i.c., in cach figure of the triplet), the various MMD’s share the same critical
point as well as the same critical slope of the CPC. For the three different asymmetrics
g, the values of ¢, %. and (dx/d¢). are 0.1091, 0.6071, 0.210 for Fig. 4a, 0.1239,
0.6111, 0.326 for Fig. 4b, and 0.1476, 0.6205, 0.459 for Fig. 4c, respectively. Thus, a
100% incrcasc in m, from 150 to 300 results in a more than 100% increasc of the
critical CPC slope, in a 35% growth of ¢, and a 2.2% increasc in ¥ . The lattcrmost,
scemingly small, diffcrence may still cause a sizeable change in critical temperature T...
For instance, for a perfectly reasonable value of /1 in Eq. (7) of 100 K, and a T, level of
300 K, the indicated difference in %, would amount to about 12 K in T,.

On the other hand, the critical slope of the shadow curve is also affected by m, , .
For the purpose of illustration, both m, , ; and (dy/d¢,). (the latter computed from Eq.
(10d)) are given in Tables I — 111, too. Perhaps the best way to compare the effect of the
MMD is to do so at constant m, and m,, i.c., within cach of the Figs 4, and within the
same column of Tables I — III. For the three columns in Tables 1 — III (i.c., in the
sequence MMD1 — MMD3), the (2 + 1)st average grows by the amounts of 17%, 33%
and 67%, respectively. The negative shadow-curve slope, howcever, monotonously
increases only for the first two columns (§ = 1.5 and § = 2), with its absolute value
dropping by 24% and 62% over MMDI-MMD3 rangc. The high positive slope
(dy/do). for MMDI with § = 3 (Table I, last column), confirmed by Fig. 4¢ (curve 1),
is an example of the positive slope of the first kind discussed above in the chapter
“Cloud-Point and Shadow Curves”. As expected, the criteria (11a) and (11d) arc here
satisfied. All shadow curves in Figs 4 arc consistent with Eq. (10d), i.c., with slopes
listed in Tables I — III.

Summarizing the above, the critical concentration ¢, and the slopes of both the CPC
and the shadow curve appcar to be quite sensitive to m, and m, , |, and their measure-
ment is a possibility for distinguishing between various MMD’s. In practice, however,
it would be very time-consuming, with the experimental errors and difficultics probably
1oo great (particularly in the case of the shadow curve) for these data to be of any usc!?,

Turning now our attention to the centire curves, it is scen from Fig. 4a that at § = 1.5,
the differences between various MMD’s are small and probably hard to dctect ex-
perimentally. The deviations increase when the value of § is increased. However, an
unambiguous diffcrentiation between, say, MMD3 of Fig. 4b, and MMD1 in Fig. 4¢ by
only mcasuring the CPC would scem to be impossible. Type of the distribution and its
€ valuc both play their role and cannot be simply distinguished in the CPC’s.

Using the phase-volume ratio to determine m, and the type of distribution is bound
to fail, too, as witnessed by Figs 5. Since usually the phasc-volume ratio goes to zero
at the cloud point if ¢ > ¢, and to infinity for ¢ < ¢, we show plots of x against r as
well as vs 1/r. The different distributions show quite varied patterns which could be
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used to extract information on the MMD. However, the m, valuc should then be known.
The higher concentrations (see ¢ = 0.2) appear to be uscless altogether since the x(r)
curves do not differ a great for the three MMD’s. Morcover, working with 20%
polymcr solutions would present experimental problems because of the high viscosity

05 T 0-6

FiG. S

Interaction parameter  as a function of the phasc-volume ratio, r, and 1/r for indicated values of the
initial polymer concentration, ¢ (volume fraction), and for § 1.5 (&, aa), € 2 (b, bb), and & 3 (c, cc).
Type of distribution: 1 MMD1, 2 MMD2, 3 MMD3
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of such solutions. At relatively low concentrations (¢ = 0.05) the differences should be
well detectable, but the phase-volume ratios involved are in the order 10 and difficult
to assess. It is the middle range of concentrations, not far from ¢, that would scem to
be most useful since the different MMD’s show up quite sensitively and well measur-
able in %(r) behavior. Figure 6, redrawn from ref.*, demonstrates that the calculated
patterns can be confirmed by experiment.

150 T T T T
o 150 b
[ [
T,°C —-\‘\‘\0'0‘42
T
145 T
0-031
us 4
0-06
%0 | . 0021
N L 140 a -
0 0-S 1-0 r 15 0 0-2 ur 0-6
Fig. 6

‘Temperature as a function of phase-volume ratio (&) and 1/r (b) for indicated initial polymer concen-
trations (weight fraction). Polymer: lincar polyethylene fraction with weight-average molar mass, M,,
= 140 kg mol™!, v = 1.5, £ = 1.9. Solvent: diphenyl ether

It follows from the results of these calculations that, with the present experimental
methods, a simple way of dctermining m, does not cxist. The same conclusion follows
from similar calculations with other v and & values. Therefore, we must conclude that
procedures like those leading to Fig. 1 can hardly be avoided. In each of the two ap-
proaches indicated in the figure a wide grid of & functions is introduced into a fitting
procedure in which the data determine the weight fractions and the molar-mass range,
occasionally rejecting specific values or ranges. The data of Fig. 6, and others, are
currently being treated in this fashion.

We wish to thank M. Rozniak for technical help with some calculations and graphical work.
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